Is converging bounded sequences really harder than converging binary sequences?

> Claude Laflamme University of Calgary

Historical Overview

Winter School 2015 section Set Theory & Topology Hejnice, Czech Republic

Definition (Vojtáș (88))

 $\mathfrak{r} = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega} \ \forall b \in 2^{\omega} \ \exists A \in \mathcal{A} \ \lim_{n \in A} b(n) \text{ exists.}\}$ $= \min\{|\mathcal{A}| : \forall B \ \exists A \in \mathcal{A} \ (A \subseteq^* B \text{ or } A \subseteq^* \omega \setminus B)\}$ = unsplitting number.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Vojtáș (88))

$$\mathfrak{r} = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega} \ \forall b \in 2^{\omega} \ \exists A \in \mathcal{A} \ \lim_{n \in A} b(n) \text{ exists.}\}$$
$$= \min\{|\mathcal{A}| : \forall B \ \exists A \in \mathcal{A} \ (A \subseteq^* B \text{ or } A \subseteq^* \omega \setminus B)\}$$
$$= unsplitting number.$$

$$\begin{aligned} & \mathfrak{x}_{\sigma} = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega} : \forall b \in \ell^{\infty} \; \exists A \in \mathcal{A} \; \lim_{n \in A} b(n) \text{ exists.} \} \\ &= \min\{|\mathcal{A}| : \forall \langle B_n \rangle_n \; \exists A \in \mathcal{A} \; \forall n \; (A \subseteq^* B_n \text{ or } A \subseteq^* \omega \setminus B_n) \} \\ &= \sigma - \text{unsplitting number.} \end{aligned}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Proof of the Definition

∃ →

• • • • • • • • • • • •

Proof of the Definition

∃ →

• • • • • • • • • • • •

• Price (79) - Miller (82) – independent (κ)

イロト イヨト イヨト イヨト

- Price (79) Miller (82) independent (κ)
- Burke, Monk, Bozeman.. (\leq 89) weak density

(日) (同) (三) (三)

- Price (79) Miller (82) independent (κ)
- Burke, Monk, Bozeman.. (≤ 89) weak density
- Vojtáš (89) no name

(日) (同) (三) (三)

- Price (79) Miller (82) independent (κ)
- Burke, Monk, Bozeman.. (\leq 89) weak density
- Vojtáš (89) no name
- Bešlagić & van Douwen (90) reaping number

The verb "to reap" means "to split", but as the letter σ has already been used, [2], we use ρ . (To be honest, ρ was suggested by Nyikos, who has a different reason for his choice of letter, and our term "to reap" is a back-formation. Furthermore, "to reap" does not really mean "to split".)

イロト イポト イヨト イヨト

- Price (79) Miller (82) independent (κ)
- Burke, Monk, Bozeman.. (\leq 89) weak density
- Vojtáš (89) no name
- Bešlagić & van Douwen (90) reaping number

The verb "to reap" means "to split", but as the letter σ has already been used, [2], we use ρ . (To be honest, ρ was suggested by Nyikos, who has a different reason for his choice of letter, and our term "to reap" is a back-formation. Furthermore, "to reap" does not really mean "to split".)

• Vaughan (90) – refinement number.

- Price (79) Miller (82) independent (κ)
- Burke, Monk, Bozeman.. (\leq 89) weak density
- Vojtáš (89) no name
- Bešlagić & van Douwen (90) reaping number

The verb "to reap" means "to split", but as the letter σ has already been used, [2], we use ρ . (To be honest, ρ was suggested by Nyikos, who has a different reason for his choice of letter, and our term "to reap" is a back-formation. Furthermore, "to reap" does not really mean "to split".)

- Vaughan (90) refinement number.
- Balcar, Dow, Simon, Steprāns, Watson (92) reaping number.

- Price (79) Miller (82) independent (κ)
- Burke, Monk, Bozeman.. (\leq 89) weak density
- Vojtáš (89) no name
- Bešlagić & van Douwen (90) reaping number

The verb "to reap" means "to split", but as the letter σ has already been used, [2], we use ρ . (To be honest, ρ was suggested by Nyikos, who has a different reason for his choice of letter, and our term "to reap" is a back-formation. Furthermore, "to reap" does not really mean "to split".)

- Vaughan (90) refinement number.
- Balcar, Dow, Simon, Steprāns, Watson (92) reaping number.
- Blass (10) unsplitting number.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Early Questions

Question (Vojtáš 89)

Is
$$\mathfrak{r} = \mathfrak{r}_{\sigma}$$
?

イロト イヨト イヨト イヨト

Early Questions

Question (Vojtáš 89)

Is
$$\mathfrak{r} = \mathfrak{r}_{\sigma}$$
?

Question (Miller 82)

Is $cf(\mathfrak{r})$ uncountable?

Observation

 $cf(\mathfrak{r}_{\sigma})$ is uncountable.

イロト イポト イヨト イヨト

Consider an unsplitting family \mathcal{A} of size \mathfrak{r} .

イロト イヨト イヨト イヨト

Consider an unsplitting family \mathcal{A} of size \mathfrak{r} . For each $X \in [\omega]^{\omega}$, fix a bijection $\pi_X : \omega \to X$.Now define

$$\mathcal{A}_0 = \mathcal{A}$$
 and $\mathcal{A}_{n+1} = \{\pi_X(Y) : X, Y \in \mathcal{A}_n\}$

So $\bigcup A_n$ has size \mathfrak{r} , and is "unsplitting below each member".

(日) (同) (三) (三)

Consider an unsplitting family \mathcal{A} of size \mathfrak{r} . For each $X \in [\omega]^{\omega}$, fix a bijection $\pi_X : \omega \to X$.Now define

$$\mathcal{A}_0 = \mathcal{A} \text{ and } \mathcal{A}_{n+1} = \{\pi_X(Y) : X, Y \in \mathcal{A}_n\}$$

So $\bigcup A_n$ has size \mathfrak{r} , and is "unsplitting below each member". Now given $\langle B_n \rangle_n$, choose:

$$A_0 \in \mathcal{A}_0 : A_0 \subseteq^* B_0 \text{ or } A_0 \subseteq^* \omega \setminus B_0$$

$$A_1 \in \mathcal{A}_1 : A_1 \subseteq A_0 \text{ and } A_1 \subseteq^* A_0 \cap B_1 \text{ or } A_1 \subseteq^* A_0 \setminus B_1$$

...

・ロン ・四 ・ ・ ヨン ・ ヨン

Consider an unsplitting family \mathcal{A} of size \mathfrak{r} . For each $X \in [\omega]^{\omega}$, fix a bijection $\pi_X : \omega \to X$.Now define

$$\mathcal{A}_0 = \mathcal{A} \text{ and } \mathcal{A}_{n+1} = \{\pi_X(Y) : X, Y \in \mathcal{A}_n\}$$

So $\bigcup A_n$ has size \mathfrak{r} , and is "unsplitting below each member". Now given $\langle B_n \rangle_n$, choose:

$$A_0 \in \mathcal{A}_0 : A_0 \subseteq^* B_0 \text{ or } A_0 \subseteq^* \omega \setminus B_0$$

$$A_1 \in \mathcal{A}_1 : A_1 \subseteq A_0 \text{ and } A_1 \subseteq^* A_0 \cap B_1 \text{ or } A_1 \subseteq^* A_0 \setminus B_1$$

...

Now choose $A \subseteq^* A_n$ for each n and this does unsplit $\langle B_n \rangle_n$.

(日) (周) (三) (三)

Theorem (Blass 93)

$$max\{\mathfrak{d},\mathfrak{r}\} \leq \mathfrak{hom}_n \leq max\{\mathfrak{d},\mathfrak{r}_\sigma\}.$$

Definition

$$\mathfrak{d} = \min\{|\mathcal{D}| : \mathcal{D} \subseteq \omega^{\omega} \, \forall g \in \omega^{\omega}; \exists f \in \mathcal{D} \, f \geq^* g.\}$$

$$\mathfrak{hom}_n = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega} : \, \forall h : [\omega]^n \to 2 \, \exists \mathcal{A} \in \mathcal{A} \, h \upharpoonright [\mathcal{A}]^n =^* cte.\}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theorem (Blass 93)

$$max\{\mathfrak{d},\mathfrak{r}\} \leq \mathfrak{hom}_n \leq max\{\mathfrak{d},\mathfrak{r}_\sigma\}.$$

Definition

$$\mathfrak{d} = \min\{|\mathcal{D}| : \mathcal{D} \subseteq \omega^{\omega} \, \forall g \in \omega^{\omega}; \exists f \in \mathcal{D} \, f \geq^* g.\}$$

$$\mathfrak{hom}_n = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega} : \, \forall h : [\omega]^n \to 2 \, \exists \mathcal{A} \in \mathcal{A} \, h \upharpoonright [\mathcal{A}]^n =^* cte.\}$$

Proof $\mathfrak{hom}_2 \leq max\{\mathfrak{d},\mathfrak{r}_\sigma\}.$

For *h* in a dominating family \mathcal{D} , *X* in a σ -unspliting family \mathcal{R} and $Y \in \pi_X(\mathcal{R})$, choose

 $H(h, X, Y) \subseteq Y$ infinite so that $x < y \implies h(x) < y$

. Then $\{H(h, X, Y) : h \in \mathcal{D}, X \in \mathcal{R}, Y \in \pi_x(\mathcal{R})\}$ works for \mathfrak{hom}_2 .

$$\mathfrak{hom}_n = max\{\mathfrak{d},\mathfrak{r}_\sigma\}.$$

・ロト ・聞ト ・ヨト ・ヨト

$$\mathfrak{hom}_n = max\{\mathfrak{d},\mathfrak{r}_\sigma\}.$$

Proof $\mathfrak{r}_{\sigma} \leq \mathfrak{hom}_2$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\mathfrak{hom}_n = max\{\mathfrak{d},\mathfrak{r}_\sigma\}.$$

Proof $\mathfrak{r}_{\sigma} \leq \mathfrak{hom}_2$.

<ロ> (日) (日) (日) (日) (日)

$$\mathfrak{hom}_n = \max\{\mathfrak{d}, \mathfrak{r}_\sigma\}.$$

Proof $\mathfrak{r}_{\sigma} \leq \mathfrak{hom}_2$.

Define $h\{x < y\} = 0$ if $\hat{x} \leq_{lex} \hat{y}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

$$\mathfrak{hom}_n = \max\{\mathfrak{d}, \mathfrak{r}_\sigma\}.$$

Proof $\mathfrak{r}_{\sigma} \leq \mathfrak{hom}_2$.

Define
$$h\{x < y\} = 0$$
 if $\hat{x} \leq_{lex} \hat{y}$.
If $h \upharpoonright [A]^2 = cte$, then $\chi_n \upharpoonright A =^* cte$ for all n .

イロト イヨト イヨト イヨト

 $\mathfrak{r}_{\sigma} \leq \max\{cf([\mathfrak{r}]^{\aleph_0}), \mathit{non}(\mathcal{M})\}.$

イロト イポト イヨト イヨト

$$\mathfrak{r}_{\sigma} \leq \max\{cf([\mathfrak{r}]^{\aleph_0}), \textit{non}(\mathcal{M})\}.$$

Proof.

Let $\kappa = \max\{cf([\mathfrak{r}]^{\aleph_0}), non(\mathcal{M})\}$, and let $\{A_\beta : \beta < \mathfrak{r}\}$ be an unsplitting family ... and "unsplitting below each member".

$$\mathfrak{r}_{\sigma} \leq \max\{cf([\mathfrak{r}]^{\aleph_0}), \textit{non}(\mathcal{M})\}.$$

Proof.

Let $\kappa = \max\{cf([\mathfrak{r}]^{\aleph_0}), non(\mathcal{M})\}$, and let $\{A_\beta : \beta < \mathfrak{r}\}$ be an unsplitting family ... and "unsplitting below each member". Let $\{B_\alpha : \alpha < \kappa\}$ be stationary in $[\mathfrak{r}]^{\aleph_0}$ (Shelah), bijections $\pi_\alpha : \omega \to B_\alpha$.

$$\mathfrak{r}_{\sigma} \leq \max\{cf([\mathfrak{r}]^{\aleph_0}), \textit{non}(\mathcal{M})\}.$$

Proof.

Let $\kappa = \max\{cf([\mathfrak{r}]^{\aleph_0}), non(\mathcal{M})\}$, and let $\{A_\beta : \beta < \mathfrak{r}\}$ be an unsplitting family ... and "unsplitting below each member". Let $\{B_\alpha : \alpha < \kappa\}$ be stationary in $[\mathfrak{r}]^{\aleph_0}$ (Shelah), bijections $\pi_\alpha : \omega \to B_\alpha$. Let $\{g_\gamma : \gamma < \kappa\} \subseteq {}^{\omega}\omega$ be nonmeager.

$$\mathfrak{r}_{\sigma} \leq \max\{cf([\mathfrak{r}]^{\aleph_0}), \textit{non}(\mathcal{M})\}.$$

Proof.

Let $\kappa = \max\{cf([\mathfrak{r}]^{\aleph_0}), non(\mathcal{M})\}$, and let $\{A_\beta : \beta < \mathfrak{r}\}$ be an unsplitting family ... and "unsplitting below each member". Let $\{B_\alpha : \alpha < \kappa\}$ be stationary in $[\mathfrak{r}]^{\aleph_0}$ (Shelah), bijections $\pi_\alpha : \omega \to B_\alpha$. Let $\{g_\gamma : \gamma < \kappa\} \subseteq {}^{\omega}\omega$ be nonmeager. Given $\alpha, \gamma < \kappa$, construct $C_{\alpha,\gamma} \in [\omega]^{\omega}$, recursively as follows: $C^0_{\alpha,\gamma} = \omega$ $C^{n+1}_{\alpha,\gamma} = \begin{cases} A_{\pi_\alpha(g_\gamma(n))} & \text{if this set is almost contained in } C^n_{\alpha,\gamma}, \\ C^n_{\alpha,\gamma} & \text{otherwise.} \end{cases}$

$$\mathfrak{r}_{\sigma} \leq \max\{cf([\mathfrak{r}]^{\aleph_0}), \mathit{non}(\mathcal{M})\}.$$

Proof.

Let $\kappa = \max\{cf([\mathfrak{r}]^{\aleph_0}), non(\mathcal{M})\}$, and let $\{A_\beta : \beta < \mathfrak{r}\}$ be an unsplitting family ... and "unsplitting below each member". Let $\{B_\alpha : \alpha < \kappa\}$ be stationary in $[\mathfrak{r}]^{\aleph_0}$ (Shelah), bijections $\pi_\alpha : \omega \to B_\alpha$. Let $\{g_\gamma : \gamma < \kappa\} \subseteq {}^{\omega}\omega$ be nonmeager. Given $\alpha, \gamma < \kappa$, construct $C_{\alpha,\gamma} \in [\omega]^{\omega}$, recursively as follows: $C^0_{\alpha,\gamma} = \omega$ $C^{n+1}_{\alpha,\gamma} = \begin{cases} A_{\pi_\alpha(g_\gamma(n))} & \text{if this set is almost contained in } C^n_{\alpha,\gamma}, \\ C^n_{\alpha,\gamma} & \text{otherwise.} \end{cases}$ In the end, let $C_{\alpha,\gamma}$ be an infinite pseudointersection of the $C^n_{\alpha,\gamma}$.

$$\mathfrak{r}_{\sigma} \leq \max\{cf([\mathfrak{r}]^{\aleph_0}), \mathit{non}(\mathcal{M})\}.$$

Proof.

Let $\kappa = \max\{cf([\mathfrak{r}]^{\aleph_0}), non(\mathcal{M})\}$, and let $\{A_\beta : \beta < \mathfrak{r}\}$ be an unsplitting family ... and "unsplitting below each member". Let $\{B_{\alpha}: \alpha < \kappa\}$ be stationary in $[\mathfrak{r}]^{\aleph_0}$ (Shelah), bijections $\pi_{\alpha}: \omega \to B_{\alpha}$. Let $\{g_{\gamma}: \gamma < \kappa\} \subseteq {}^{\omega}\omega$ be nonmeager. Given $\alpha, \gamma < \kappa$, construct $C_{\alpha,\gamma} \in [\omega]^{\omega}$, recursively as follows: $C_{\alpha,\gamma}^0 = \omega$ $C^{n+1}_{\alpha,\gamma} = \begin{cases} A_{\pi_{\alpha}(g_{\gamma}(n))} & \text{if this set is almost contained in } C^{n}_{\alpha,\gamma}, \\ C^{n}_{\alpha,\gamma} & \text{otherwise.} \end{cases}$ In the end, let $C_{\alpha,\gamma}$ be an infinite pseudointersection of the $C_{\alpha,\gamma}^n$. Show that the sets $C_{\alpha,\gamma}$ form a σ -unsplitting family: given $\langle D_n \rangle_n$: $E = \{F \subset \mathfrak{r} : \forall n \forall \beta \in F \exists \delta \in F \ A_{\delta} \subseteq^* A_{\beta} \cap D_n \text{ or } A_{\delta} \subseteq^* A_{\beta} \setminus D_n\}$

• $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{u}]^{\aleph_0}).$

<ロ> (日) (日) (日) (日) (日)

- $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{u}]^{\aleph_0}).$
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{r}]^{\aleph_0})$.

イロト イポト イヨト イヨト

- $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{u}]^{\aleph_0}).$
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{r}]^{\aleph_0})$.

Corollary (Brendle Just (00))

If $\mathfrak{r} < \mathfrak{r}_{\sigma}$, then

- either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r}$;
- 2 either $\mathfrak{d} < \mathfrak{r}_{\sigma}$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r}$;
- 3 either $\mathfrak{r} < \mathfrak{u}$ or $cf([\mathfrak{u}]^{\aleph_0}) > \mathfrak{u}$.

イロト イポト イヨト イヨト

- $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{u}]^{\aleph_0}).$
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{r}]^{\aleph_0})$.

Corollary (Brendle Just (00))

If $\mathfrak{r} < \mathfrak{r}_{\sigma}$, then

- either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r}$;
- 2 either $\mathfrak{d} < \mathfrak{r}_{\sigma}$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r}$;
- 3 either $\mathfrak{r} < \mathfrak{u}$ or $cf([\mathfrak{u}]^{\aleph_0}) > \mathfrak{u}$.

Remark

•
$$cf([\mathfrak{u}]^{\aleph_0}) > \mathfrak{u} \implies 2^{\omega} \ge \mathfrak{u} > \aleph_{\omega}.$$

- $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{u}]^{\aleph_0}).$
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{r}]^{\aleph_0})$.

Corollary (Brendle Just (00))

If $\mathfrak{r} < \mathfrak{r}_{\sigma}$, then

- either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r}$;
- 2 either $\mathfrak{d} < \mathfrak{r}_{\sigma}$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r}$;
- 3 either $\mathfrak{r} < \mathfrak{u}$ or $cf([\mathfrak{u}]^{\aleph_0}) > \mathfrak{u}$.

- $cf([\mathfrak{u}]^{\aleph_0}) > \mathfrak{u} \implies 2^{\omega} \ge \mathfrak{u} > \aleph_{\omega}.$
- $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r} \implies 2^{\omega} \ge \mathfrak{r} \ge \aleph_{\omega}.$

- $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{u}]^{\aleph_0}).$
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{r}]^{\aleph_0})$.

Corollary (Brendle Just (00))

If $\mathfrak{r} < \mathfrak{r}_{\sigma}$, then

- either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r}$;
- 2 either $\mathfrak{d} < \mathfrak{r}_{\sigma}$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r}$;
- 3 either $\mathfrak{r} < \mathfrak{u}$ or $cf([\mathfrak{u}]^{\aleph_0}) > \mathfrak{u}$.

- $cf([\mathfrak{u}]^{\aleph_0}) > \mathfrak{u} \implies 2^{\omega} \ge \mathfrak{u} > \aleph_{\omega}.$
- $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r} \implies 2^{\omega} \ge \mathfrak{r} \ge \aleph_{\omega}.$

- $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{u}]^{\aleph_0}).$
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{r}]^{\aleph_0})$.

Corollary (Brendle Just (00))

If $\mathfrak{r} < \mathfrak{r}_{\sigma}$, then

- either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r};$
- 2 either $\mathfrak{d} < \mathfrak{r}_{\sigma}$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r}$;
- 3 either $\mathfrak{r} < \mathfrak{u}$ or $cf([\mathfrak{u}]^{\aleph_0}) > \mathfrak{u}$.

- $cf([\mathfrak{u}]^{\aleph_0}) > \mathfrak{u} \implies 2^{\omega} \ge \mathfrak{u} > \aleph_{\omega}.$
- $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r} \implies 2^{\omega} \ge \mathfrak{r} \ge \aleph_{\omega}.$
- *θ* < *τ*_σ in random real model.
- $\mathfrak{r} < \mathfrak{u}$ in Goldstern-Shelah model.

- $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{u}]^{\aleph_0}).$
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq cf([\mathfrak{r}]^{\aleph_0})$.

Corollary (Brendle Just (00))

If $\mathfrak{r} < \mathfrak{r}_{\sigma}$, then

- either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r}$;
- 2 either $\mathfrak{d} < \mathfrak{r}_{\sigma}$ or $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r}$;
- $\textbf{3} \text{ either } \mathfrak{r} < \mathfrak{u} \text{ or } cf([\mathfrak{u}]^{\aleph_0}) > \mathfrak{u}.$

- $cf([\mathfrak{u}]^{\aleph_0}) > \mathfrak{u} \implies 2^{\omega} \ge \mathfrak{u} > \aleph_{\omega}.$
- $cf([\mathfrak{r}]^{\aleph_0}) > \mathfrak{r} \implies 2^{\omega} \ge \mathfrak{r} \ge \aleph_{\omega}.$
- $\mathfrak{d} < \mathfrak{r}_{\sigma}$ in random real model.
- $\mathfrak{r} < \mathfrak{u}$ in Goldstern-Shelah model.
- Finite support iteration forces non(M) ≤ r, so cannot yield r = ℵ₁ < r_σ = ℵ₂.

Countable support iteration of proper posets over CH cannot yield $\mathfrak{r} < \mathfrak{r}_{\sigma}$.

Countable support iteration of proper posets over CH cannot yield $\mathfrak{r} < \mathfrak{r}_{\sigma}$.

Proof.

• Wlog $V \cap [\omega]^{\omega}$ is an unsplitting family.

Countable support iteration of proper posets over CH cannot yield $\mathfrak{r} < \mathfrak{r}_{\sigma}$.

Proof.

- Wlog $V \cap [\omega]^{\omega}$ is an unsplitting family.
- For each $\alpha < \omega_2 V$ contains an ultrafilter generating an ultrafilter in $V[G_{\alpha}]$.

Countable support iteration of proper posets over CH cannot yield $\mathfrak{r} < \mathfrak{r}_{\sigma}$.

Proof.

- Wlog $V \cap [\omega]^{\omega}$ is an unsplitting family.
- For each $\alpha < \omega_2 V$ contains an ultrafilter generating an ultrafilter in $V[G_{\alpha}]$.
- \implies $V \cap [\omega]^{\omega}$ is a $\sigma-$ unsplitting family.

< 回 > < 三 > < 三 >

Countable support iteration of proper posets over CH cannot yield $\mathfrak{r} < \mathfrak{r}_{\sigma}$.

Proof.

- Wlog $V \cap [\omega]^{\omega}$ is an unsplitting family.
- For each $\alpha < \omega_2 V$ contains an ultrafilter generating an ultrafilter in $V[G_{\alpha}]$.
- $\bullet \implies V \cap [\omega]^\omega \text{ is a } \sigma\text{-unsplitting family}.$
- Thus $\mathfrak{r} = \mathfrak{r}_{\sigma} = \aleph_1$.

(本語)と 本語(と) 本語(と

Countable support iteration of proper posets over CH cannot yield $\mathfrak{r} < \mathfrak{r}_{\sigma}$.

Proof.

- Wlog $V \cap [\omega]^{\omega}$ is an unsplitting family.
- For each α < ω₂ V contains an ultrafilter generating an ultrafilter in V[G_α].
- $\bullet \implies V \cap [\omega]^\omega \text{ is a } \sigma\text{-unsplitting family}.$

• Thus
$$\mathfrak{r} = \mathfrak{r}_{\sigma} = \aleph_1$$
.

Conjecture

Andrzej will show uncountable support iteraition won't work either

イロト 不得下 イヨト イヨト 二日

• If $\mathfrak{r} < \mathfrak{d}$, then $\mathfrak{r} = \mathfrak{r}_{\sigma} = \mathfrak{u}$ (and thus $cf(\mathfrak{r}) > \omega$)

- If $\mathfrak{r} < \mathfrak{d}$, then $\mathfrak{r} = \mathfrak{r}_{\sigma} = \mathfrak{u}$ (and thus $cf(\mathfrak{r}) > \omega$)
- Hence $\mathfrak{r} \geq \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$, and $\min{\{\mathfrak{d}, \mathfrak{r}\}} = \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$.

(日) (同) (三) (三)

- If $\mathfrak{r} < \mathfrak{d}$, then $\mathfrak{r} = \mathfrak{r}_{\sigma} = \mathfrak{u}$ (and thus $cf(\mathfrak{r}) > \omega$)
- Hence $\mathfrak{r} \geq \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$, and $\min{\{\mathfrak{d}, \mathfrak{r}\}} = \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$.

Proof.

• Suppose $r < \mathfrak{d}$, \mathcal{A} unsplittable of size r, and let $\mathcal{A}' = \{next(-, A) : A \in \mathcal{A}\}.$

- If $\mathfrak{r} < \mathfrak{d}$, then $\mathfrak{r} = \mathfrak{r}_{\sigma} = \mathfrak{u}$ (and thus $cf(\mathfrak{r}) > \omega$)
- Hence $\mathfrak{r} \geq \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$, and $\min{\{\mathfrak{d}, \mathfrak{r}\}} = \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$.

Proof.

- Suppose $r < \mathfrak{d}$, \mathcal{A} unsplittable of size r, and let $\mathcal{A}' = \{next(-, A) : A \in \mathcal{A}\}.$
- Let $g \in \omega^{\omega}$ not dominated by the max of any finite subset of \mathcal{A}' .

- If $\mathfrak{r} < \mathfrak{d}$, then $\mathfrak{r} = \mathfrak{r}_{\sigma} = \mathfrak{u}$ (and thus $cf(\mathfrak{r}) > \omega$)
- Hence $\mathfrak{r} \geq \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$, and $\min{\{\mathfrak{d}, \mathfrak{r}\}} = \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$.

Proof.

- Suppose $r < \mathfrak{d}$, \mathcal{A} unsplittable of size r, and let $\mathcal{A}' = \{next(-, A) : A \in \mathcal{A}\}.$
- Let $g \in \omega^{\omega}$ not dominated by the max of any finite subset of \mathcal{A}' .
- $\mathcal{F} = \{\{n : f(n) \leq g(n)\} : f \in \mathcal{A}'\}$ generates a filter \mathcal{F} .

イロト イポト イヨト イヨト

- If $\mathfrak{r} < \mathfrak{d}$, then $\mathfrak{r} = \mathfrak{r}_{\sigma} = \mathfrak{u}$ (and thus $cf(\mathfrak{r}) > \omega$)
- Hence $\mathfrak{r} \geq \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$, and $\min{\{\mathfrak{d}, \mathfrak{r}\}} = \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$.

Proof.

- Suppose $r < \mathfrak{d}$, \mathcal{A} unsplittable of size r, and let $\mathcal{A}' = \{next(-, A) : A \in \mathcal{A}\}.$
- Let $g \in \omega^{\omega}$ not dominated by the max of any finite subset of \mathcal{A}' .
- $\mathcal{F} = \{\{n : f(n) \leq g(n)\} : f \in \mathcal{A}'\}$ generates a filter \mathcal{F} .
- There is h ∈ ω^ω finite-to-one {h(X ∩ Y) : X, Y ∈ F} is unsplittable, thus having the finite intersection property generates an ultrafilter.

- If $\mathfrak{r} < \mathfrak{d}$, then $\mathfrak{r} = \mathfrak{r}_{\sigma} = \mathfrak{u}$ (and thus $cf(\mathfrak{r}) > \omega$)
- Hence $\mathfrak{r} \geq \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$, and $\min{\{\mathfrak{d}, \mathfrak{r}\}} = \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$.

Proof.

- Suppose $r < \mathfrak{d}$, \mathcal{A} unsplittable of size r, and let $\mathcal{A}' = \{next(-, A) : A \in \mathcal{A}\}.$
- Let $g \in \omega^{\omega}$ not dominated by the max of any finite subset of \mathcal{A}' .
- $\mathcal{F} = \{\{n : f(n) \leq g(n)\} : f \in \mathcal{A}'\}$ generates a filter \mathcal{F} .
- There is h ∈ ω^ω finite-to-one {h(X ∩ Y) : X, Y ∈ F} is unsplittable, thus having the finite intersection property generates an ultrafilter.
- Hence r = u.

イロト イポト イヨト イヨト

- If $\mathfrak{r} < \mathfrak{d}$, then $\mathfrak{r} = \mathfrak{r}_{\sigma} = \mathfrak{u}$ (and thus $cf(\mathfrak{r}) > \omega$)
- Hence $\mathfrak{r} \geq \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$, and $\min{\{\mathfrak{d}, \mathfrak{r}\}} = \min{\{\mathfrak{d}, \mathfrak{r}_{\sigma}\}}$.

Proof.

- Suppose $r < \mathfrak{d}$, \mathcal{A} unsplittable of size r, and let $\mathcal{A}' = \{next(-, A) : A \in \mathcal{A}\}.$
- Let $g \in \omega^{\omega}$ not dominated by the max of any finite subset of \mathcal{A}' .
- $\mathcal{F} = \{\{n : f(n) \leq g(n)\} : f \in \mathcal{A}'\}$ generates a filter \mathcal{F} .
- There is h ∈ ω^ω finite-to-one {h(X ∩ Y) : X, Y ∈ F} is unsplittable, thus having the finite intersection property generates an ultrafilter.
- Hence $\mathfrak{r} = \mathfrak{u}$.
- So the ultrafilter is a *P*-point $(\mathfrak{u} = \mathfrak{r} < \mathfrak{d})$, thus $\mathfrak{r} = \mathfrak{r}_{\sigma}$.

イロト イポト イヨト イヨト

(日) (四) (王) (王) (王)

 \mathfrak{fr} and \mathfrak{fr}_{σ}

Definition (Brendle 98)

 $\begin{array}{lll} \mathfrak{fr}:=&\min\{|\mathcal{A}|:\mathcal{A} \text{ consists of partitions of } \omega \text{ into finite sets,} \\ & \text{and no single } X\subseteq \omega \text{ splits every element of } \mathcal{A} \} \\ \mathfrak{fr}_{\sigma}:=&\min\{|\mathcal{A}|:\mathcal{A} \text{ consists of partitions of } \omega \text{ into finite sets,} \\ & \text{and no countable } \mathcal{X}\subseteq [\omega]^{\omega} \text{ splits every element of } \mathcal{A} \} \end{array}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 \mathfrak{fr} and \mathfrak{fr}_{σ}

Definition (Brendle 98)

 $\begin{array}{lll} \mathfrak{ft} := & \min\{|\mathcal{A}| : \mathcal{A} \text{ consists of partitions of } \omega \text{ into finite sets,} \\ & \text{and no single } X \subseteq \omega \text{ splits every element of } \mathcal{A} \} \\ \mathfrak{ft}_{\sigma} := & \min\{|\mathcal{A}| : \mathcal{A} \text{ consists of partitions of } \omega \text{ into finite sets,} \\ & \text{and no countable } \mathcal{X} \subseteq [\omega]^{\omega} \text{ splits every element of } \mathcal{A} \} \end{array}$

Theorem (Brendle 98)

$$\mathfrak{fr} = \min{\mathfrak{d}, \mathfrak{r}}$$
 and $\min{\mathfrak{d}, \mathfrak{r}_{\sigma}} = \mathfrak{fr}_{\sigma}$.

イロト イヨト イヨト

 \mathfrak{fr} and \mathfrak{fr}_{σ}

Definition (Brendle 98)

$$\begin{array}{ll} \mathfrak{fr} := & \min\{|\mathcal{A}| : \mathcal{A} \text{ consists of partitions of } \omega \text{ into finite sets,} \\ & \text{and no single } X \subseteq \omega \text{ splits every element of } \mathcal{A} \} \\ \mathfrak{fr}_{\sigma} := & \min\{|\mathcal{A}| : \mathcal{A} \text{ consists of partitions of } \omega \text{ into finite sets,} \\ & \text{and no countable } \mathcal{X} \subseteq [\omega]^{\omega} \text{ splits every element of } \mathcal{A} \} \end{array}$$

Theorem (Brendle 98)

$$\mathfrak{fr} = \min{\mathfrak{d}, \mathfrak{r}}$$
 and $\min{\mathfrak{d}, \mathfrak{r}_{\sigma}} = \mathfrak{fr}_{\sigma}$.

Theorem (Aubrey 04) $min\{\mathfrak{d},\mathfrak{r}\} = min\{\mathfrak{d},\mathfrak{r}_{\sigma}\}$ and thus :

$$\mathfrak{fr}=\mathfrak{fr}_\sigma$$

Winter School 2015

Question

If
$$\mathfrak{r} = \aleph_1$$
, is $\mathfrak{r} = \mathfrak{r}_{\sigma}$?

イロト イヨト イヨト イヨト

Question

If
$$\mathfrak{r} = \aleph_1$$
, is $\mathfrak{r} = \mathfrak{r}_\sigma$?

Conjecture

 $\mathfrak{r} = \mathfrak{r}_{\sigma}$

<ロ> (日) (日) (日) (日) (日)