Is converging bounded sequences really harder than converging binary sequences?

Claude Laflamme
University of Calgary

Historical Overview

Winter School 2015
section Set Theory \& Topology
Hejnice, Czech Republic

Definition (Vojtás (88))

$$
\begin{aligned}
\mathfrak{r} & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq[\omega]^{\omega} \forall b \in 2^{\omega} \exists A \in \mathcal{A} \lim _{n \in A} b(n) \text { exists. }\right\} \\
& =\min \left\{|\mathcal{A}|: \forall B \exists A \in \mathcal{A}\left(A \subseteq^{*} B \text { or } A \subseteq^{*} \omega \backslash B\right)\right\} \\
& =\text { unsplitting number. }
\end{aligned}
$$

Definition (Vojtás (88))

$$
\begin{aligned}
\mathfrak{r} & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq[\omega]^{\omega} \forall b \in 2^{\omega} \exists A \in \mathcal{A} \lim _{n \in A} b(n) \text { exists. }\right\} \\
& =\min \left\{|\mathcal{A}|: \forall B \exists A \in \mathcal{A}\left(A \subseteq^{*} B \text { or } A \subseteq^{*} \omega \backslash B\right)\right\} \\
& =\text { unsplitting number. }
\end{aligned}
$$

$$
\begin{aligned}
\mathfrak{r}_{\sigma} & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq[\omega]^{\omega}: \forall b \in \ell^{\infty} \exists A \in \mathcal{A} \lim _{n \in A} b(n) \text { exists. }\right\} \\
& =\min \left\{|\mathcal{A}|: \forall\left\langle B_{n}\right\rangle_{n} \exists A \in \mathcal{A} \forall n\left(A \subseteq^{*} B_{n} \text { or } A \subseteq^{*} \omega \backslash B_{n}\right)\right\} \\
& =\sigma-\text { unsplitting number. }
\end{aligned}
$$

Proof of the Definition

Proof.

Convergence

Proof of the Definition

Proof.

\[

\]

Historical Terminology

- Price (79) - Miller (82) - independent (κ)

Historical Terminology

- Price (79) - Miller (82) - independent (κ)
- Burke, Monk, Bozeman.. (≤ 89) - weak density

Historical Terminology

- Price (79) - Miller (82) - independent (κ)
- Burke, Monk, Bozeman.. (≤ 89) - weak density
- Vojtáš (89) - no name

Historical Terminology

- Price (79) - Miller (82) - independent (κ)
- Burke, Monk, Bozeman.. (≤ 89) - weak density
- Vojtáš (89) - no name
- Bešlagić \& van Douwen (90) - reaping number

The verb "to reap" means "to split", but as the letter σ has already been used, [2], we use ρ. (To be honest, ρ was suggested by Nyikos, who has a different reason for his choice of letter, and our term "to reap" is a back-formation. Furthermore, "to reap" does not really mean "to split".)

Historical Terminology

- Price (79) - Miller (82) - independent (κ)
- Burke, Monk, Bozeman.. (≤ 89) - weak density
- Vojtáš (89) - no name
- Bešlagić \& van Douwen (90) - reaping number

The verb "to reap" means "to split", but as the letter σ has already been used, [2], we use ρ. (To be honest, ρ was suggested by Nyikos, who has a different reason for his choice of letter, and our term "to reap" is a back-formation. Furthermore, "to reap" does not really mean "to split".)

- Vaughan (90) - refinement number.

Historical Terminology

- Price (79) - Miller (82) - independent (κ)
- Burke, Monk, Bozeman.. (≤ 89) - weak density
- Vojtáš (89) - no name
- Bešlagić \& van Douwen (90) - reaping number

The verb "to reap" means "to split", but as the letter σ has already been used, [2], we use ρ. (To be honest, ρ was suggested by Nyikos, who has a different reason for his choice of letter, and our term "to reap" is a back-formation. Furthermore, "to reap" does not really mean "to split".)

- Vaughan (90) - refinement number.
- Balcar, Dow, Simon, Steprāns, Watson (92) - reaping number.

Historical Terminology

- Price (79) - Miller (82) - independent (κ)
- Burke, Monk, Bozeman.. (≤ 89) - weak density
- Vojtáš (89) - no name
- Bešlagić \& van Douwen (90) - reaping number

The verb "to reap" means "to split", but as the letter σ has already been used, [2], we use ρ. (To be honest, ρ was suggested by Nyikos, who has a different reason for his choice of letter, and our term "to reap" is a back-formation. Furthermore, "to reap" does not really mean "to split".)

- Vaughan (90) - refinement number.
- Balcar, Dow, Simon, Steprāns, Watson (92) - reaping number.
- Blass (10) - unsplitting number.

Early Questions

Question (Vojtáš 89)

$$
\mid s \mathfrak{r}=\mathfrak{r}_{\sigma} ?
$$

Early Questions

Question (Vojtáš 89)

$$
\mid s \mathfrak{r}=\mathfrak{r}_{\sigma} ?
$$

Question (Miller 82)

Is $c f(\mathfrak{r})$ uncountable?

Observation

$$
c f\left(\mathfrak{r}_{\sigma}\right) \text { is uncountable. }
$$

Remark (All easy...)

Consider an unsplitting family \mathcal{A} of size \mathfrak{r}.

Remark (All easy...)

Consider an unsplitting family \mathcal{A} of size \mathfrak{r}.
For each $X \in[\omega]^{\omega}$, fix a bijection $\pi_{X}: \omega \rightarrow X$. Now define

$$
\mathcal{A}_{0}=\mathcal{A} \text { and } \mathcal{A}_{n+1}=\left\{\pi_{X}(Y): X, Y \in \mathcal{A}_{n}\right\}
$$

So $\bigcup \mathcal{A}_{n}$ has size \mathfrak{r}, and is "unsplitting below each member".

Remark (All easy...)

Consider an unsplitting family \mathcal{A} of size \mathfrak{r}.
For each $X \in[\omega]^{\omega}$, fix a bijection $\pi_{X}: \omega \rightarrow X$. Now define

$$
\mathcal{A}_{0}=\mathcal{A} \text { and } \mathcal{A}_{n+1}=\left\{\pi_{X}(Y): X, Y \in \mathcal{A}_{n}\right\}
$$

So $\bigcup \mathcal{A}_{n}$ has size \mathfrak{r}, and is "unsplitting below each member".
Now given $\left\langle B_{n}\right\rangle_{n}$, choose:

$$
\begin{aligned}
& A_{0} \in \mathcal{A}_{0}: A_{0} \subseteq^{*} B_{0} \text { or } A_{0} \subseteq^{*} \omega \backslash B_{0} \\
& A_{1} \in \mathcal{A}_{1}: A_{1} \subseteq A_{0} \text { and } A_{1} \subseteq^{*} A_{0} \cap B_{1} \text { or } A_{1} \subseteq^{*} A_{0} \backslash B_{1}
\end{aligned}
$$

Remark (All easy...)

Consider an unsplitting family \mathcal{A} of size \mathfrak{r}.
For each $X \in[\omega]^{\omega}$, fix a bijection $\pi_{X}: \omega \rightarrow X$. Now define

$$
\mathcal{A}_{0}=\mathcal{A} \text { and } \mathcal{A}_{n+1}=\left\{\pi_{X}(Y): X, Y \in \mathcal{A}_{n}\right\}
$$

So $\bigcup \mathcal{A}_{n}$ has size \mathfrak{r}, and is "unsplitting below each member".
Now given $\left\langle B_{n}\right\rangle_{n}$, choose:

$$
\begin{aligned}
& A_{0} \in \mathcal{A}_{0}: A_{0} \subseteq^{*} B_{0} \text { or } A_{0} \subseteq^{*} \omega \backslash B_{0} \\
& A_{1} \in \mathcal{A}_{1}: A_{1} \subseteq A_{0} \text { and } A_{1} \subseteq^{*} A_{0} \cap B_{1} \text { or } A_{1} \subseteq^{*} A_{0} \backslash B_{1}
\end{aligned}
$$

Now choose $A \subseteq^{*} A_{n}$ for each n and this does unsplit $\left\langle B_{n}\right\rangle_{n}$.

Theorem (Blass 93)

$$
\max \{\mathfrak{d}, \mathfrak{r}\} \leq \mathfrak{h o m}_{n} \leq \max \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}
$$

Definition

$$
\mathfrak{d}=\min \left\{|\mathcal{D}|: \mathcal{D} \subseteq \omega^{\omega} \forall g \in \omega^{\omega} ; \exists f \in \mathcal{D} f \geq^{*} g .\right\}
$$

$$
\mathfrak{h o m}{ }_{n}=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq[\omega]^{\omega}: \forall h:[\omega]^{n} \rightarrow 2 \exists A \in \mathcal{A} h \upharpoonright[A]^{n}={ }^{*} c t e .\right\}
$$

Theorem (Blass 93)

$$
\max \{\mathfrak{d}, \mathfrak{r}\} \leq \mathfrak{h o m}_{n} \leq \max \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}
$$

Definition

$$
\begin{aligned}
\mathfrak{d} & =\min \left\{|\mathcal{D}|: \mathcal{D} \subseteq \omega^{\omega} \forall g \in \omega^{\omega} ; \exists f \in \mathcal{D} f \geq^{*} g .\right\} \\
\mathfrak{h o m}_{n} & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq[\omega]^{\omega}: \forall h:[\omega]^{n} \rightarrow 2 \exists A \in \mathcal{A} h \upharpoonright[A]^{n}=^{*} c t e .\right\}
\end{aligned}
$$

Proof $\mathfrak{h o m}_{2} \leq \max \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$.

For h in a dominating family \mathcal{D}, X in a σ-unspliting family \mathcal{R} and $Y \in \pi_{X}(\mathcal{R})$, choose

$$
H(h, X, Y) \subseteq Y \text { infinite so that } x<y \Longrightarrow h(x)<y
$$

Then $\left\{H(h, X, Y): h \in \mathcal{D}, X \in \mathcal{R}, Y \in \pi_{x}(\mathcal{R})\right\}$ works for $\mathfrak{h o m}_{2}$.

Theorem (Brendle 95)

$$
\mathfrak{h o m}_{n}=\max \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\} .
$$

Theorem (Brendle 95)

$$
\mathfrak{h o m}_{n}=\max \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\} .
$$

Proof $\mathfrak{r}_{\sigma} \leq \mathfrak{h o m}_{2}$.

$$
\begin{array}{cllllll}
\chi_{0}= & 0 & 1 & 0 & 0 & 1 & \cdots \\
\chi_{1}= & 1 & 1 & 0 & 1 & 0 & \cdots \\
\chi_{2}= & 1 & 1 & 1 & 0 & 0 & \cdots \\
\vdots= & & & & &
\end{array}
$$

Theorem (Brendle 95)

$$
\mathfrak{h o m}_{n}=\max \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\} .
$$

Proof $\mathfrak{r}_{\sigma} \leq \mathfrak{h o m}_{2}$.

$$
\begin{gathered}
\\
\\
\chi_{0}=\begin{array}{cccccc}
\hat{0} & \hat{1} & \hat{2} & \hat{3} & \hat{4} & \cdots \\
& \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
& 1 & 0 & 0 & 1 & \cdots \\
\chi_{1}= & 1 & 1 & 0 & 1 & 0 \\
\cdots \\
\chi_{2}= & 1 & 1 & 1 & 0 & 0 \\
\cdots \\
\vdots= & & & & &
\end{array} .
\end{gathered}
$$

Theorem (Brendle 95)

$$
\mathfrak{h o m}_{n}=\max \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\} .
$$

Proof $\mathfrak{r}_{\sigma} \leq \mathfrak{h o m}_{2}$.

$$
\begin{aligned}
& \begin{array}{llllll}
\hat{0} & \hat{1} & \hat{2} & \hat{3} & \hat{4} & \ldots
\end{array} \\
& \downarrow \downarrow \downarrow \downarrow \downarrow \cdots \\
& \chi_{0}=\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & \cdots
\end{array} \\
& \chi_{1}=\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & \cdots
\end{array} \\
& \chi_{2}=\begin{array}{llllll}
1 & 1 & 1 & 0 & \cdots
\end{array} \\
& \vdots=
\end{aligned}
$$

Define $h\{x<y\}=0$ if $\hat{x} \preceq_{\text {lex }} \hat{y}$.

Theorem (Brendle 95)

$$
\mathfrak{h o m}_{n}=\max \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\} .
$$

Proof $\mathfrak{r}_{\sigma} \leq \mathfrak{h o m}_{2}$.

$$
\begin{aligned}
& \begin{array}{llllll}
\hat{0} & \hat{1} & \hat{2} & \hat{3} & \hat{4} & \ldots
\end{array} \\
& \downarrow \downarrow \downarrow \downarrow \downarrow \cdots \\
& \chi_{0}=\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & \cdots
\end{array} \\
& \chi_{1}=\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & \cdots
\end{array} \\
& \chi_{2}=\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & \cdots
\end{array} \\
& \vdots=
\end{aligned}
$$

Define $h\{x<y\}=0$ if $\hat{x} \preceq_{\text {lex }} \hat{y}$. If $h \upharpoonright[A]^{2}=c t e$, then $\chi_{n} \upharpoonright A={ }^{*}$ cte for all n.

Theorem (Brendle (98) - Kamburelis and Wẹglorz (96))

$$
\mathfrak{r}_{\sigma} \leq \max \left\{c f\left([r]^{\aleph_{0}}\right), \operatorname{non}(\mathcal{M})\right\} .
$$

Theorem (Brendle (98) - Kamburelis and Wẹglorz (96))

$$
\mathfrak{r}_{\sigma} \leq \max \left\{c f\left([r]^{\aleph_{0}}\right), \operatorname{non}(\mathcal{M})\right\} .
$$

Proof.

Let $\kappa=\max \left\{c f([r]]^{\aleph_{0}}\right)$, non $\left.(\mathcal{M})\right\}$, and let $\left\{A_{\beta}: \beta<\mathfrak{r}\right\}$ be an unsplitting family ... and "unsplitting below each member".

Theorem (Brendle (98) - Kamburelis and Wẹglorz (96))

$$
\mathfrak{r}_{\sigma} \leq \max \left\{c f\left([r]^{\aleph_{0}}\right), \operatorname{non}(\mathcal{M})\right\} .
$$

Proof.

Let $\kappa=\max \left\{c f\left([\mathfrak{r}]^{\aleph_{0}}\right)\right.$, non $\left.(\mathcal{M})\right\}$, and let $\left\{A_{\beta}: \beta<\mathfrak{r}\right\}$ be an unsplitting family ... and "unsplitting below each member".
Let $\left\{B_{\alpha}: \alpha<\kappa\right\}$ be stationary in $[r]^{\aleph_{0}}$ (Shelah), bijections $\pi_{\alpha}: \omega \rightarrow B_{\alpha}$.

Theorem (Brendle (98) - Kamburelis and Wẹglorz (96))

$$
\mathfrak{r}_{\sigma} \leq \max \left\{c f\left([r]^{\aleph_{0}}\right), \operatorname{non}(\mathcal{M})\right\} .
$$

Proof.

Let $\kappa=\max \left\{c f\left([\mathfrak{r}]^{\aleph_{0}}\right)\right.$, non $\left.(\mathcal{M})\right\}$, and let $\left\{A_{\beta}: \beta<\mathfrak{r}\right\}$ be an unsplitting family ... and "unsplitting below each member".
Let $\left\{B_{\alpha}: \alpha<\kappa\right\}$ be stationary in $[r]^{\aleph_{0}}$ (Shelah), bijections $\pi_{\alpha}: \omega \rightarrow B_{\alpha}$. Let $\left\{g_{\gamma}: \gamma<\kappa\right\} \subseteq{ }^{\omega} \omega$ be nonmeager.

Theorem (Brendle (98) - Kamburelis and Wẹglorz (96))

$$
\mathfrak{r}_{\sigma} \leq \max \left\{c f\left([r]^{\aleph_{0}}\right), \operatorname{non}(\mathcal{M})\right\} .
$$

Proof.

Let $\kappa=\max \left\{c f([r]]^{\aleph_{0}}\right)$, non $\left.(\mathcal{M})\right\}$, and let $\left\{A_{\beta}: \beta<\mathfrak{r}\right\}$ be an unsplitting family ... and "unsplitting below each member".
Let $\left\{B_{\alpha}: \alpha<\kappa\right\}$ be stationary in $[\mathfrak{r}]^{\aleph_{0}}$ (Shelah), bijections $\pi_{\alpha}: \omega \rightarrow B_{\alpha}$. Let $\left\{g_{\gamma}: \gamma<\kappa\right\} \subseteq{ }^{\omega} \omega$ be nonmeager. Given $\alpha, \gamma<\kappa$, construct $C_{\alpha, \gamma} \in[\omega]^{\omega}$, recursively as follows:
$C_{\alpha, \gamma}^{0}=\omega$
$C_{\alpha, \gamma}^{n+1}= \begin{cases}A_{\pi_{\alpha}\left(g_{\gamma}(n)\right)} & \text { if this set is almost contained in } C_{\alpha, \gamma}^{n}, \\ C_{\alpha, \gamma}^{n} & \text { otherwise. }\end{cases}$

Theorem (Brendle (98) - Kamburelis and Wẹglorz (96))

$$
\mathfrak{r}_{\sigma} \leq \max \left\{c f\left([r]^{\aleph_{0}}\right), \operatorname{non}(\mathcal{M})\right\} .
$$

Proof.

Let $\kappa=\max \left\{c f([r]]^{\aleph_{0}}\right)$, non $\left.(\mathcal{M})\right\}$, and let $\left\{A_{\beta}: \beta<\mathfrak{r}\right\}$ be an unsplitting family ... and "unsplitting below each member".
Let $\left\{B_{\alpha}: \alpha<\kappa\right\}$ be stationary in $[\mathfrak{r}]^{\aleph_{0}}$ (Shelah), bijections $\pi_{\alpha}: \omega \rightarrow B_{\alpha}$. Let $\left\{g_{\gamma}: \gamma<\kappa\right\} \subseteq{ }^{\omega} \omega$ be nonmeager. Given $\alpha, \gamma<\kappa$, construct $C_{\alpha, \gamma} \in[\omega]^{\omega}$, recursively as follows:

$$
C_{\alpha, \gamma}^{0}=\omega
$$

$$
C_{\alpha, \gamma}^{n+1}= \begin{cases}A_{\pi_{\alpha}\left(g_{\gamma}(n)\right)} & \text { if this set is almost contained in } C_{\alpha, \gamma}^{n} \\ C_{\alpha, \gamma}^{n} & \text { otherwise. }\end{cases}
$$

In the end, let $C_{\alpha, \gamma}$ be an infinite pseudointersection of the $C_{\alpha, \gamma}^{n}$.

Theorem (Brendle (98) - Kamburelis and Wẹglorz (96))

$$
\mathfrak{r}_{\sigma} \leq \max \left\{c f\left([r]^{\aleph_{0}}\right), \operatorname{non}(\mathcal{M})\right\} .
$$

Proof.

Let $\kappa=\max \left\{c f\left([\mathfrak{r}]^{\aleph_{0}}\right)\right.$, non $\left.(\mathcal{M})\right\}$, and let $\left\{A_{\beta}: \beta<\mathfrak{r}\right\}$ be an unsplitting family ... and "unsplitting below each member".
Let $\left\{B_{\alpha}: \alpha<\kappa\right\}$ be stationary in $[r]^{\aleph_{0}}$ (Shelah), bijections $\pi_{\alpha}: \omega \rightarrow B_{\alpha}$. Let $\left\{g_{\gamma}: \gamma<\kappa\right\} \subseteq \omega_{\omega} \omega$ be nonmeager. Given $\alpha, \gamma<\kappa$, construct $C_{\alpha, \gamma} \in[\omega]^{\omega}$, recursively as follows:

$$
C_{\alpha, \gamma}^{0}=\omega
$$

$$
C_{\alpha, \gamma}^{n+1}= \begin{cases}A_{\pi_{\alpha}\left(g_{\gamma}(n)\right)} & \text { if this set is almost contained in } C_{\alpha, \gamma}^{n} \\ C_{\alpha, \gamma}^{n} & \text { otherwise. }\end{cases}
$$

In the end, let $C_{\alpha, \gamma}$ be an infinite pseudointersection of the $C_{\alpha, \gamma}^{n}$. Show that the sets $C_{\alpha, \gamma}$ form a σ-unsplitting family: given $\left\langle D_{n}\right\rangle_{n}$:

$$
E=\left\{F \subset \mathfrak{r}: \forall n \forall \beta \in F \exists \delta \in F A_{\delta} \subseteq^{*} A_{\beta} \cap D_{n} \text { or } A_{\delta} \subseteq^{*} A_{\beta} \backslash D_{n}\right\}
$$

Theorem (Brendle (98))

- $\mathfrak{r}_{\sigma} \leq c f\left([u]^{\aleph_{0}}\right)$.

Theorem (Brendle (98))

- $\mathfrak{r}_{\sigma} \leq c f\left([\mathfrak{u l}]^{\aleph_{0}}\right)$.
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq c f\left([\mathfrak{r}]^{\aleph_{0}}\right)$.

Theorem (Brendle (98))

- $\mathfrak{r}_{\sigma} \leq c f\left([\mathfrak{u}]^{\aleph_{0}}\right)$.
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq \operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)$.

Corollary (Brendle Just (00))
If $\mathfrak{r}<\mathfrak{r}_{\sigma}$, then
(1) either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(2) either $\mathfrak{d}<\mathfrak{r}_{\sigma}$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(3) either $\mathfrak{r}<\mathfrak{u}$ or $\operatorname{cf}\left([\mathfrak{u}]^{\aleph_{0}}\right)>\mathfrak{u}$.

Theorem (Brendle (98))

- $\mathfrak{r}_{\sigma} \leq c f\left([\mathfrak{u}]^{\aleph_{0}}\right)$.
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq \operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)$.

Corollary (Brendle Just (00))

If $\mathfrak{r}<\mathfrak{r}_{\sigma}$, then
(1) either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(2) either $\mathfrak{d}<\mathfrak{r}_{\sigma}$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(3) either $\mathfrak{r}<\mathfrak{u}$ or $\operatorname{cf}\left([\mathfrak{u}]^{\aleph_{0}}\right)>\mathfrak{u}$.

Remark

- $\operatorname{cf}\left([\mathfrak{u}]^{\aleph_{0}}\right)>\mathfrak{u} \Longrightarrow 2^{\omega} \geq \mathfrak{u}>\aleph_{\omega}$.

Theorem (Brendle (98))

- $\mathfrak{r}_{\sigma} \leq c f\left([\mathfrak{u}]^{\aleph_{0}}\right)$.
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq \operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)$.

Corollary (Brendle Just (00))

If $\mathfrak{r}<\mathfrak{r}_{\sigma}$, then
(1) either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(2) either $\mathfrak{d}<\mathfrak{r}_{\sigma}$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(3) either $\mathfrak{r}<\mathfrak{u}$ or $\operatorname{cf}\left([\mathfrak{u}]^{\aleph_{0}}\right)>\mathfrak{u}$.

Remark

- $\operatorname{cf}\left([\mathfrak{u}]^{\aleph_{0}}\right)>\mathfrak{u} \Longrightarrow 2^{\omega} \geq \mathfrak{u}>\aleph_{\omega}$.
- $c f\left([r]^{\aleph_{0}}\right)>\mathfrak{r} \Longrightarrow 2^{\omega} \geq \mathfrak{r} \geq \aleph_{\omega}$.

Theorem (Brendle (98))

- $\mathfrak{r}_{\sigma} \leq c f\left([\mathfrak{u}]^{\aleph_{0}}\right)$.
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq \operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)$.

Corollary (Brendle Just (00))

If $\mathfrak{r}<\mathfrak{r}_{\sigma}$, then
(1) either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(2) either $\mathfrak{d}<\mathfrak{r}_{\sigma}$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(3) either $\mathfrak{r}<\mathfrak{u}$ or $\operatorname{cf}\left([\mathfrak{u}]^{\aleph_{0}}\right)>\mathfrak{u}$.

Remark

- $\operatorname{cf}\left([\mathfrak{u}]^{\aleph_{0}}\right)>\mathfrak{u} \Longrightarrow 2^{\omega} \geq \mathfrak{u}>\aleph_{\omega}$.
- $c f\left([r]^{\aleph_{0}}\right)>\mathfrak{r} \Longrightarrow 2^{\omega} \geq \mathfrak{r} \geq \aleph_{\omega}$.
- $\mathfrak{d}<\mathfrak{r}_{\sigma}$ in random real model.

Theorem (Brendle (98))

- $\mathfrak{r}_{\sigma} \leq c f\left([\mathfrak{u}]^{\aleph_{0}}\right)$.
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq \operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)$.

Corollary (Brendle Just (00))

If $\mathfrak{r}<\mathfrak{r}_{\sigma}$, then
(1) either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(2) either $\mathfrak{d}<\mathfrak{r}_{\sigma}$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(3) either $\mathfrak{r}<\mathfrak{u}$ or $\operatorname{cf}\left([\mathfrak{u}]^{\aleph_{0}}\right)>\mathfrak{u}$.

Remark

- $\operatorname{cf}\left([\mathfrak{u}]^{\aleph_{0}}\right)>\mathfrak{u} \Longrightarrow 2^{\omega} \geq \mathfrak{u}>\aleph_{\omega}$.
- $c f\left([r]^{\aleph_{0}}\right)>\mathfrak{r} \Longrightarrow 2^{\omega} \geq \mathfrak{r} \geq \aleph_{\omega}$.
- $\mathfrak{d}<\mathfrak{r}_{\sigma}$ in random real model.
- $\mathfrak{r}<\mathfrak{u}$ in Goldstern-Shelah model.

Theorem (Brendle (98))

- $\mathfrak{r}_{\sigma} \leq c f\left([\mathfrak{u}]^{\aleph_{0}}\right)$.
- If $\mathfrak{r}_{\sigma} \leq \mathfrak{d}$, then $\mathfrak{r}_{\sigma} \leq \operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)$.

Corollary (Brendle Just (00))

If $\mathfrak{r}<\mathfrak{r}_{\sigma}$, then
(1) either $\mathfrak{r}_{\sigma} \leq \operatorname{non}(\mathcal{M})$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(2) either $\mathfrak{d}<\mathfrak{r}_{\sigma}$ or $\operatorname{cf}\left([\mathfrak{r}]^{\aleph_{0}}\right)>\mathfrak{r}$;
(3) either $\mathfrak{r}<\mathfrak{u}$ or $\operatorname{cf}\left([\mathfrak{u}]^{\aleph_{0}}\right)>\mathfrak{u}$.

Remark

- $\operatorname{cf}\left([\mathfrak{u}]^{\aleph_{0}}\right)>\mathfrak{u} \Longrightarrow 2^{\omega} \geq \mathfrak{u}>\aleph_{\omega}$.
- $c f\left([r]^{\aleph_{0}}\right)>\mathfrak{r} \Longrightarrow 2^{\omega} \geq \mathfrak{r} \geq \aleph_{\omega}$.
- $\mathfrak{d}<\mathfrak{r}_{\sigma}$ in random real model.
- $\mathfrak{r}<\mathfrak{u}$ in Goldstern-Shelah model.
- Finite support iteration forces non $(\mathcal{M}) \leq \mathfrak{r}$, so cannot yield $\mathfrak{r}=\aleph_{1}<\mathfrak{r}_{\sigma}=\aleph_{2}$.

Remark
 Countable support iteration of proper posets over CH cannot yield $\mathfrak{r}<\mathfrak{r}_{\sigma}$.

Remark
 Countable support iteration of proper posets over CH cannot yield $\mathfrak{r}<\mathfrak{r}_{\sigma}$.

Proof.

- Wlog $V \cap[\omega]^{\omega}$ is an unsplitting family.

Remark
 Countable support iteration of proper posets over CH cannot yield $\mathfrak{r}<\mathfrak{r}_{\sigma}$.

Proof.

- Wlog $V \cap[\omega]^{\omega}$ is an unsplitting family.
- For each $\alpha<\omega_{2} V$ contains an ultrafilter generating an ultrafilter in $V\left[G_{\alpha}\right]$.

Remark

Countable support iteration of proper posets over CH cannot yield $\mathfrak{r}<\mathfrak{r}_{\sigma}$.

Proof.

- Wlog $V \cap[\omega]^{\omega}$ is an unsplitting family.
- For each $\alpha<\omega_{2} V$ contains an ultrafilter generating an ultrafilter in $V\left[G_{\alpha}\right]$.
- $\Longrightarrow V \cap[\omega]^{\omega}$ is a σ-unsplitting family.

Remark

Countable support iteration of proper posets over CH cannot yield $\mathfrak{r}<\mathfrak{r}_{\sigma}$.

Proof.

- Wlog $V \cap[\omega]^{\omega}$ is an unsplitting family.
- For each $\alpha<\omega_{2} V$ contains an ultrafilter generating an ultrafilter in $V\left[G_{\alpha}\right]$.
- $\Longrightarrow V \cap[\omega]^{\omega}$ is a σ-unsplitting family.
- Thus $\mathfrak{r}=\mathfrak{r}_{\sigma}=\aleph_{1}$.

Remark

Countable support iteration of proper posets over CH cannot yield $\mathfrak{r}<\mathfrak{r}_{\sigma}$.

Proof.

- Wlog $V \cap[\omega]^{\omega}$ is an unsplitting family.
- For each $\alpha<\omega_{2} V$ contains an ultrafilter generating an ultrafilter in $V\left[G_{\alpha}\right]$.
- $\Longrightarrow V \cap[\omega]^{\omega}$ is a σ-unsplitting family.
- Thus $\mathfrak{r}=\mathfrak{r}_{\sigma}=\aleph_{1}$.

Conjecture

Andrzej will show uncountable support iteraition won't work either....

Theorem (Aubrey 04)

- If $\mathfrak{r}<\mathfrak{d}$, then $\mathfrak{r}=\mathfrak{r}_{\sigma}=\mathfrak{u}$ (and thus $\operatorname{cf}(\mathfrak{r})>\omega$)

Theorem (Aubrey 04)

- If $\mathfrak{r}<\mathfrak{d}$, then $\mathfrak{r}=\mathfrak{r}_{\sigma}=\mathfrak{u}$ (and thus $\operatorname{cf}(\mathfrak{r})>\omega$)
- Hence $\mathfrak{r} \geq \min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$, and $\min \{\mathfrak{d}, \mathfrak{r}\}=\min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$.

Theorem (Aubrey 04)

- If $\mathfrak{r}<\mathfrak{d}$, then $\mathfrak{r}=\mathfrak{r}_{\sigma}=\mathfrak{u}$ (and thus $\operatorname{cf}(\mathfrak{r})>\omega$)
- Hence $\mathfrak{r} \geq \min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$, and $\min \{\mathfrak{d}, \mathfrak{r}\}=\min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$.

Proof.

- Suppose $\mathfrak{r}<\mathfrak{d}, \mathcal{A}$ unsplittable of size \mathfrak{r}, and let $\mathcal{A}^{\prime}=\{\operatorname{next}(-, A): A \in \mathcal{A}\}$.

Theorem (Aubrey 04)

- If $\mathfrak{r}<\mathfrak{d}$, then $\mathfrak{r}=\mathfrak{r}_{\sigma}=\mathfrak{u}$ (and thus $\operatorname{cf}(\mathfrak{r})>\omega$)
- Hence $\mathfrak{r} \geq \min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$, and $\min \{\mathfrak{d}, \mathfrak{r}\}=\min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$.

Proof.

- Suppose $\mathfrak{r}<\mathfrak{d}, \mathcal{A}$ unsplittable of size \mathfrak{r}, and let

$$
\mathcal{A}^{\prime}=\{\operatorname{next}(-, A): A \in \mathcal{A}\} .
$$

- Let $g \in \omega^{\omega}$ not dominated by the max of any finite subset of \mathcal{A}^{\prime}.

Theorem (Aubrey 04)

- If $\mathfrak{r}<\mathfrak{d}$, then $\mathfrak{r}=\mathfrak{r}_{\sigma}=\mathfrak{u}$ (and thus $\operatorname{cf}(\mathfrak{r})>\omega$)
- Hence $\mathfrak{r} \geq \min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$, and $\min \{\mathfrak{d}, \mathfrak{r}\}=\min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$.

Proof.

- Suppose $\mathfrak{r}<\mathfrak{d}, \mathcal{A}$ unsplittable of size \mathfrak{r}, and let

$$
\mathcal{A}^{\prime}=\{\operatorname{next}(-, A): A \in \mathcal{A}\} .
$$

- Let $g \in \omega^{\omega}$ not dominated by the max of any finite subset of \mathcal{A}^{\prime}.
- $\mathcal{F}=\left\{\{n: f(n) \leq g(n)\}: f \in \mathcal{A}^{\prime}\right\}$ generates a filter \mathcal{F}.

Theorem (Aubrey 04)

- If $\mathfrak{r}<\mathfrak{d}$, then $\mathfrak{r}=\mathfrak{r}_{\sigma}=\mathfrak{u}$ (and thus $\operatorname{cf}(\mathfrak{r})>\omega$)
- Hence $\mathfrak{r} \geq \min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$, and $\min \{\mathfrak{d}, \mathfrak{r}\}=\min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$.

Proof.

- Suppose $\mathfrak{r}<\mathfrak{d}, \mathcal{A}$ unsplittable of size \mathfrak{r}, and let $\mathcal{A}^{\prime}=\{\operatorname{next}(-, A): A \in \mathcal{A}\}$.
- Let $g \in \omega^{\omega}$ not dominated by the max of any finite subset of \mathcal{A}^{\prime}.
- $\mathcal{F}=\left\{\{n: f(n) \leq g(n)\}: f \in \mathcal{A}^{\prime}\right\}$ generates a filter \mathcal{F}.
- There is $h \in \omega^{\omega}$ finite-to-one $\{h(X \cap Y): X, Y \in \mathcal{F}\}$ is unsplittable, thus having the finite intersection property generates an ultrafilter.

Theorem (Aubrey 04)

- If $\mathfrak{r}<\mathfrak{d}$, then $\mathfrak{r}=\mathfrak{r}_{\sigma}=\mathfrak{u}$ (and thus $\operatorname{cf}(\mathfrak{r})>\omega$)
- Hence $\mathfrak{r} \geq \min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$, and $\min \{\mathfrak{d}, \mathfrak{r}\}=\min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$.

Proof.

- Suppose $\mathfrak{r}<\mathfrak{d}, \mathcal{A}$ unsplittable of size \mathfrak{r}, and let $\mathcal{A}^{\prime}=\{\operatorname{next}(-, A): A \in \mathcal{A}\}$.
- Let $g \in \omega^{\omega}$ not dominated by the max of any finite subset of \mathcal{A}^{\prime}.
- $\mathcal{F}=\left\{\{n: f(n) \leq g(n)\}: f \in \mathcal{A}^{\prime}\right\}$ generates a filter \mathcal{F}.
- There is $h \in \omega^{\omega}$ finite-to-one $\{h(X \cap Y): X, Y \in \mathcal{F}\}$ is unsplittable, thus having the finite intersection property generates an ultrafilter.
- Hence $\mathfrak{r}=\mathfrak{u}$.

Theorem (Aubrey 04)

- If $\mathfrak{r}<\mathfrak{d}$, then $\mathfrak{r}=\mathfrak{r}_{\sigma}=\mathfrak{u}$ (and thus $c f(\mathfrak{r})>\omega$)
- Hence $\mathfrak{r} \geq \min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$, and $\min \{\mathfrak{d}, \mathfrak{r}\}=\min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}$.

Proof.

- Suppose $\mathfrak{r}<\mathfrak{d}, \mathcal{A}$ unsplittable of size \mathfrak{r}, and let

$$
\mathcal{A}^{\prime}=\{\operatorname{next}(-, A): A \in \mathcal{A}\} .
$$

- Let $g \in \omega^{\omega}$ not dominated by the max of any finite subset of \mathcal{A}^{\prime}.
- $\mathcal{F}=\left\{\{n: f(n) \leq g(n)\}: f \in \mathcal{A}^{\prime}\right\}$ generates a filter \mathcal{F}.
- There is $h \in \omega^{\omega}$ finite-to-one $\{h(X \cap Y): X, Y \in \mathcal{F}\}$ is unsplittable, thus having the finite intersection property generates an ultrafilter.
- Hence $\mathfrak{r}=\mathfrak{u}$.
- So the ultrafilter is a P-point $(\mathfrak{u}=\mathfrak{r}<\mathfrak{d})$, thus $\mathfrak{r}=\mathfrak{r}_{\sigma}$.

$\mathfrak{r}_{\sigma}=\mathfrak{h o m} \boldsymbol{m}_{2}$

\mathfrak{U}

\mathfrak{b}

$\mathfrak{d}=\mathfrak{h o m} \mathfrak{m}_{2}$

$\mathfrak{r}=\mathfrak{r}_{\sigma}=\mathfrak{u}$

\mathfrak{b}
$\mathfrak{r} \geq \mathfrak{d}$

$\mathfrak{f r}$ and $\mathfrak{f r}_{\sigma}$

Definition (Brendle 98)

$\mathfrak{f r}:=\min \{|\mathcal{A}|: \mathcal{A}$ consists of partitions of ω into finite sets, and no single $X \subseteq \omega$ splits every element of $\mathcal{A}\}$
$\mathfrak{f r}_{\sigma}:=\min \{|\mathcal{A}|: \mathcal{A}$ consists of partitions of ω into finite sets, and no countable $\mathcal{X} \subseteq[\omega]^{\omega}$ splits every element of $\left.\mathcal{A}\right\}$

$\mathfrak{f r}$ and $\mathfrak{f r}_{\sigma}$

Definition (Brendle 98)

$\mathfrak{f r}:=\min \{|\mathcal{A}|: \mathcal{A}$ consists of partitions of ω into finite sets, and no single $X \subseteq \omega$ splits every element of $\mathcal{A}\}$
$\mathfrak{f r}_{\sigma}:=\min \{|\mathcal{A}|: \mathcal{A}$ consists of partitions of ω into finite sets, and no countable $\mathcal{X} \subseteq[\omega]^{\omega}$ splits every element of $\left.\mathcal{A}\right\}$

Theorem (Brendle 98)

$$
\mathfrak{f r}=\min \{\mathfrak{d}, \mathfrak{r}\} \text { and } \min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}=\mathfrak{f r}_{\sigma} .
$$

$\mathfrak{f r}$ and $\mathfrak{f r}_{\sigma}$

Definition (Brendle 98)

$\mathfrak{f r}:=\quad \min \{|\mathcal{A}|: \mathcal{A}$ consists of partitions of ω into finite sets, and no single $X \subseteq \omega$ splits every element of $\mathcal{A}\}$
$\mathfrak{f r}_{\sigma}:=\min \{|\mathcal{A}|: \mathcal{A}$ consists of partitions of ω into finite sets, and no countable $\mathcal{X} \subseteq[\omega]^{\omega}$ splits every element of $\left.\mathcal{A}\right\}$

Theorem (Brendle 98)

$$
\mathfrak{f r}=\min \{\mathfrak{d}, \mathfrak{r}\} \text { and } \min \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}=\mathfrak{f r}_{\sigma} .
$$

Theorem (Aubrey 04)
$\min \{\mathfrak{0}, \mathfrak{r}\}=\min \left\{\mathfrak{0}, \mathfrak{r}_{\sigma}\right\}$ and thus :

$$
\mathfrak{f r}=\mathfrak{f r}_{\sigma}
$$

Question

$$
\text { If } \mathfrak{r}=\aleph_{1} \text {, is } \mathfrak{r}=\mathfrak{r}_{\sigma} ?
$$

Question

$$
\text { If } \mathfrak{r}=\aleph_{1} \text {, is } \mathfrak{r}=\mathfrak{r}_{\sigma} ?
$$

Conjecture

$$
\mathfrak{r}=\mathfrak{r}_{\sigma}
$$

