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Unsplitting Number

Definition (Vojtáş (88))

r = min{|A| : A ⊆ [ω]ω ∀b ∈ 2ω ∃A ∈ A lim
n∈A

b(n) exists.}

= min{|A| : ∀B ∃A ∈ A (A ⊆∗ B or A ⊆∗ ω \ B)}
= unsplitting number.

rσ = min{|A| : A ⊆ [ω]ω : ∀b ∈ `∞ ∃A ∈ A lim
n∈A

b(n) exists.}

= min{|A| : ∀〈Bn〉n ∃A ∈ A ∀n (A ⊆∗ Bn or A ⊆∗ ω \ Bn)}
= σ − unsplitting number.
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Unsplitting Number

Proof of the Definition

Proof.

Convergence
x0 x1 x2 x3 x4 x5 · · ·
‖ ‖ ‖ ‖ ‖ ‖ · · ·

rσ

χ0 = 0 0 0 1 1 0 · · ·
χ1 = 1 1 0 0 0 0 · · ·
χ2 = 1 1 1 0 0 0 · · ·
... =

...
...

...
...

...
...
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Historical Terminology

Historical Terminology

Price (79) - Miller (82) – independent (κ)

Burke, Monk, Bozeman.. (≤ 89) – weak density

Vojtáš (89) – no name

Bešlagić & van Douwen (90) – reaping number

Vaughan (90) – refinement number.

Balcar, Dow, Simon, Steprāns, Watson (92) – reaping number.

Blass (10) – unsplitting number.
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Early Questions

Early Questions

Question (Vojtáš 89)

Is r = rσ?

Question (Miller 82)

Is cf (r) uncountable?

Observation

cf (rσ) is uncountable.
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Early Questions

Remark (All easy...)

Consider an unsplitting family A of size r.

For each X ∈ [ω]ω, fix a bijection πX : ω → X .Now define

A0 = A and An+1 = {πX (Y ) : X ,Y ∈ An}

So
⋃An has size r, and is “unsplitting below each member”.

Now given 〈Bn〉n, choose:

A0 ∈ A0 : A0 ⊆∗ B0 or A0 ⊆∗ ω \ B0

A1 ∈ A1 :A1 ⊆ A0 and A1 ⊆∗ A0 ∩ B1 or A1 ⊆∗ A0 \ B1

· · ·

Now choose A ⊆∗ An for each n and this does unsplit 〈Bn〉n.
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Main Historical Results

Theorem (Blass 93)

max{d, r} ≤ homn ≤ max{d, rσ}.

Definition

d = min{|D| : D ⊆ ωω ∀g ∈ ωω;∃f ∈ D f ≥∗ g .}
homn = min{|A| : A ⊆ [ω]ω : ∀h : [ω]n → 2 ∃A ∈ A h � [A]n =∗ cte.}

Proof hom2 ≤ max{d, rσ}.
For h in a dominating family D, X in a σ-unspliting family R and
Y ∈ πX (R), choose

H(h,X ,Y ) ⊆ Y infinite so that x < y =⇒ h(x) < y

. Then {H(h,X ,Y ) : h ∈ D,X ∈ R,Y ∈ πx(R)} works for hom2.
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Main Historical Results

Theorem (Brendle 95)

homn = max{d, rσ}.

Proof rσ ≤ hom2.

0̂ 1̂ 2̂ 3̂ 4̂ · · ·
↓ ↓ ↓ ↓ ↓ · · ·

χ0 = 0 1 0 0 1 · · ·
χ1 = 1 1 0 1 0 · · ·
χ2 = 1 1 1 0 0 · · ·
... =

Define h{x < y} = 0 if x̂ �lex ŷ .
If h � [A]2 = cte, then χn � A =∗ cte for all n .
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Main Historical Results

Theorem (Brendle (98) – Kamburelis and Wȩglorz (96))

rσ ≤ max{cf ([r]ℵ0), non(M)}.

Proof.

Let κ = max{cf ([r]ℵ0), non(M)}, and let {Aβ : β < r} be an unsplitting
family ... and ”unsplitting below each member”.
Let {Bα : α < κ} be stationary in [r]ℵ0 (Shelah), bijections πα : ω → Bα.
Let {gγ : γ < κ} ⊆ ωω be nonmeager.
Given α, γ < κ, construct Cα,γ ∈ [ω]ω, recursively as follows:
C 0
α,γ = ω

Cn+1
α,γ =

{
Aπα(gγ(n)) if this set is almost contained in Cn

α,γ ,

Cn
α,γ otherwise.

In the end, let Cα,γ be an infinite pseudointersection of the Cn
α,γ .

Show that the sets Cα,γ form a σ-unsplitting family: given 〈Dn〉n:

E = {F ⊂ r : ∀n∀β ∈ F∃δ ∈ F Aδ ⊆∗ Aβ ∩ Dn or Aδ ⊆∗ Aβ \ Dn}
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rσ ≤ max{cf ([r]ℵ0), non(M)}.

Proof.

Let κ = max{cf ([r]ℵ0), non(M)}, and let {Aβ : β < r} be an unsplitting
family ... and ”unsplitting below each member”.
Let {Bα : α < κ} be stationary in [r]ℵ0 (Shelah), bijections πα : ω → Bα.
Let {gγ : γ < κ} ⊆ ωω be nonmeager.

Given α, γ < κ, construct Cα,γ ∈ [ω]ω, recursively as follows:
C 0
α,γ = ω

Cn+1
α,γ =

{
Aπα(gγ(n)) if this set is almost contained in Cn

α,γ ,

Cn
α,γ otherwise.

In the end, let Cα,γ be an infinite pseudointersection of the Cn
α,γ .

Show that the sets Cα,γ form a σ-unsplitting family: given 〈Dn〉n:

E = {F ⊂ r : ∀n∀β ∈ F∃δ ∈ F Aδ ⊆∗ Aβ ∩ Dn or Aδ ⊆∗ Aβ \ Dn}

Winter School 2015 Unsplitting number... C. Laflamme 9 / 15



Main Historical Results

Theorem (Brendle (98) – Kamburelis and Wȩglorz (96))
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Main Historical Results

Theorem (Brendle (98))

rσ ≤ cf ([u]ℵ0).

If rσ ≤ d, then rσ ≤ cf ([r]ℵ0).

Corollary (Brendle Just (00))

If r < rσ, then

1 either rσ ≤ non(M) or cf ([r]ℵ0) > r;

2 either d < rσ or cf ([r]ℵ0) > r;

3 either r < u or cf ([u]ℵ0) > u.

Remark

cf ([u]ℵ0) > u =⇒ 2ω ≥ u > ℵω.
cf ([r]ℵ0) > r =⇒ 2ω ≥ r ≥ ℵω.
d < rσ in random real model.

r < u in Goldstern-Shelah model.

Finite support iteration forces non(M) ≤ r, so cannot yield r = ℵ1 < rσ = ℵ2.
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Main Historical Results

Remark

Countable support iteration of proper posets over CH cannot yield r < rσ.

Proof.

Wlog V ∩ [ω]ω is an unsplitting family.

For each α < ω2 V contains an ultrafilter generating an ultrafilter in
V [Gα].

=⇒ V ∩ [ω]ω is a σ−unsplitting family.

Thus r = rσ = ℵ1.

Conjecture

Andrzej will show uncountable support iteraition won’t work either....
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Main Historical Results

Theorem (Aubrey 04)

If r < d, then r = rσ = u (and thus cf (r) > ω)

Hence r ≥ min{d, rσ}, and min{d, r} = min{d, rσ}.

Proof.

Suppose r < d, A unsplittable of size r, and let
A′ = {next(−,A) : A ∈ A}.
Let g ∈ ωω not dominated by the max of any finite subset of A′.
F = {{n : f (n) ≤ g(n)} : f ∈ A′} generates a filter F .

There is h ∈ ωω finite-to-one {h(X ∩ Y ) : X ,Y ∈ F} is unsplittable,
thus having the finite intersection property generates an ultrafilter.

Hence r = u.

So the ultrafilter is a P-point (u = r < d), thus r = rσ.
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Main Historical Results

r

b

u
rσ = hom2

d

b

r = rσ = u

d = hom2

r ≥ d r < d
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Main Historical Results

fr and frσ

Definition (Brendle 98)

fr := min{|A| : A consists of partitions of ω into finite sets,
and no single X ⊆ ω splits every element of A}

frσ := min{|A| : A consists of partitions of ω into finite sets,
and no countable X ⊆ [ω]ω splits every element of A}

Theorem (Brendle 98)

fr = min{d, r} and min{d, rσ} = frσ.

Theorem (Aubrey 04)

min{d, r} = min{d, rσ} and thus :

fr = frσ
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Conclusion

Question

If r = ℵ1, is r = rσ?

Conjecture
r = rσ
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